APPLIED PHYSICS LETTERS VOLUME 74, NUMBER 9 1 MARCH 1999

ERRATA

Erratum: "An application of the apertureless scanning near-field optical microscopy: Imaging a GaAlAs laser diode in operation" [Appl. Phys. Lett. 73, 3333 (1998)]

R. Bachelot, G. Wurtz, and P. Royer
Laboratoire de Nanotechnologie et d'Instrumentation Optique, Université de Technologie de Troyes,
12 rue Marie Curie, BP 2060-10010, Troyes Cedex, France
[\$0003-6951(99)04309-0]

The conclusions concerning the chemical composition of the double heterojunction (i.e., Ga_{0.85}Al_{0.15}As/GaAs/ Ga_{0.85}Al_{0.15}As) given in the letter were not correct. The emitted wavelength of the laser crystal studied in this letter (being equal to 0.78 μ m, the corresponding composition of the heterojunction) is, in fact, $Ga_{0.7}Al_{0.3}As/$ Ga_{0.85}Al_{0.15}As/Ga_{0.7}Al_{0.3}As. The purpose of this erratum is to provide some additional information to correct this mistake. The double heterojunction GaAlAs laser diode presented in the letter has the following typical composition: $Ga_{1-x}Al_xAs/Ga_{1-y}Al_yAs/Ga_{1-x}Al_xAs$, x and y being the Al molar fraction in the cladding layers and in the active layer, respectively (y < x < 0.37). The Al molar fraction in the active layer is adjusted in the [0-0.28] range to obtain the desired emitted wavelength λ (0.87–0.7 μ m). In our case, the studied laser diode emits at $\lambda = 0.78 \mu m$, imposing a y value of about 0.15.1 In our letter, we claimed that the measured confinement factor of 0.4 leads to a value of Al molar fraction in the cladding layers of 0.15. In fact, since the active layer also contains Al, the value of 0.15 found is a difference between x and y. Indeed, knowing that both the band gap and the refractive index of a Ga_{1-x}Al_xAs alloy vary linearly with $x(0 \le x \le 0.37)$, the optical confinement in the active layer is unchanged if the difference $\Delta = x - y$ stays constant. Therefore, the structures $Ga_{1-x}Al_xAs/Ga_{1-y}Al_yAs/Ga_{1-x}Al_xAs$ and $Ga_{1-\Delta}Al_{\Delta}As/Ga_{1-\Delta}As/Ga_{1-\Delta}Al_{\Delta}As/Ga_{1-\Delta}$ $GaAs/Ga_{1-\Delta}Al_{\Delta}As$ (i.e., Ga_{0.7}Al_{0.3}As/Ga_{0.85}Al_{0.15}As/ $Ga_{0.7}Al_{0.3}As \ and \ Ga_{0.85}Al_{0.15}As/GaAs/Ga_{0.85}Al_{0.15}As) \ would$ impose the same optical mode dimensions. In conclusion, the measurement, presented in the letter, leads to the following composition of the studied double heterojunction: $Ga_{0.7}Al_{0.3}As/Ga_{0.85}Al_{0.15}As/Ga_{0.7}Al_{0.3}As$.

¹H. C. Casey and M. B. Panish, *Heterostructure Lasers* (Academic, New York, 1978).